Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Genet Evol ; 105: 105376, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2061658

ABSTRACT

We sequenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from nasal and throat swabs of a hospitalized patient during the fifth wave of coronavirus disease 2019 (COVID-19) pandemic in Hong Kong. Genomic characteristics and viral load dynamics of an Omicron BA.2.2 variant before and after molnupiravir treatment were presented.

2.
Vaccines (Basel) ; 10(4)2022 Apr 03.
Article in English | MEDLINE | ID: covidwho-1776376

ABSTRACT

COVID-19 has swept across the globe since 2019 and repeated waves of infection have been caused by different variants of the original SARS-CoV-2 (wild type), with the Omicron and Delta variants having dominated recently. Vaccination is among the most important measures in the absence of widespread use of antivirals for prevention of morbidity and mortality. Inactivated virus vaccine has been abundantly used in many countries as the primary two-dose regimen. We aim to study the safety and immunogenicity of CoronaVac (three-dose inactivated virus vaccine) and the BNT162b2 (two-dose inactivated virus vaccine followed by an mRNA vaccine) booster. Both CoronaVac and BNT162b2 boosters are generally safe and have good immunogenicity against the wild type SARS-CoV-2 and the Delta variant with the majority having neutralizing antibodies (NAb) on day 30 and day 90. However, the BNT162b2 booster is associated with a much higher proportion of positive NAb against the Omicron variant. Only 8% of day 30 and day 90 samples post CoronaVac booster have NAb against the Omicron variant. In addition, more BNT162b2 booster recipients are having positive T-cell responses using interferon gamma release assay. In places using inactivated virus vaccine as the primary two-dose scheme, the heterologous mRNA vaccine booster is safe and more immunogenic against the Omicron variant and should be considered as a preferred option during the current outbreak.

3.
Sci Rep ; 12(1): 4704, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1751761

ABSTRACT

We extracted one-year genomic data (August 2020-July 2021) from GISAID EpiCoV™ database and estimated monthly proportions of 11 SARS-CoV-2 variants in various geographical regions. From continental perspective, Delta VOC predominated in Africa, Asia, Europe, North America and Oceania, with proportions of 67.58-98.31% in July 2021. In South America, proportion of Delta VOC (23.24%) has been approaching the predominant yet diminishing Gamma VOC (56.86%). We further analyzed monthly data on new COVID-19 cases, new deaths, vaccination status and variant proportions of 6 countries. Delta VOC predominated in all countries except Brazil (Gamma VOC) in July 2021. In most occasions, rise and predominance of Alpha, Beta, Gamma, Delta and Zeta variants were accompanied with surges of new cases, especially after the time point of major lineage interchange. The ascending phases of new cases lasted for 1-5 months with 1.69- to 40.63-fold peak growth, whereas new death tolls varied with regional vaccination status. Our data suggested surges of COVID-19 cases might be predicted from variant surveillance data. Despite vaccine breakthroughs by Delta VOC, death tolls were more stable in countries with better immunization coverage. Another takeaway is the urgent need to improve vaccine efficacy against Delta and emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , Prevalence , SARS-CoV-2/genetics
4.
Microbiol Spectr ; 9(1): e0034221, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1341312

ABSTRACT

As the COVID-19 pandemic progresses, there is an increasing need for rapid, accessible assays for SARS-CoV-2 detection. We present a clinical evaluation and real-world implementation of the INDICAID COVID-19 rapid antigen test (INDICAID rapid test). A multisite clinical evaluation of the INDICAID rapid test using prospectively collected nasal (bilateral anterior) swab samples from symptomatic subjects was performed. The INDICAID rapid test demonstrated a positive percent agreement (PPA) and negative percent agreement (NPA) of 85.3% (95% confidence interval [95% CI], 75.6% to 91.6%) and 94.9% (95% CI, 91.6% to 96.9%), respectively, compared to laboratory-based reverse transcriptase PCR (RT-PCR) using nasal specimens. The INDICAID rapid test was then implemented at COVID-19 outbreak screening centers in Hong Kong as part of a testing algorithm (termed "dual-track") to screen asymptomatic individuals for prioritization for confirmatory RT-PCR testing. In one approach, preliminary positive INDICAID rapid test results triggered expedited processing for laboratory-based RT-PCR, reducing the average time to confirmatory result from 10.85 h to 7.0 h. In a second approach, preliminary positive results triggered subsequent testing with an onsite rapid RT-PCR, reducing the average time to confirmatory result to 0.84 h. In 22,994 asymptomatic patients, the INDICAID rapid test demonstrated a PPA of 84.2% (95% CI, 69.6% to 92.6%) and an NPA of 99.9% (95% CI, 99.9% to 100%) compared to laboratory-based RT-PCR using combined nasal/oropharyngeal specimens. The INDICAID rapid test has excellent performance compared to laboratory-based RT-PCR testing and, when used in tandem with RT-PCR, reduces the time to confirmatory positive result. IMPORTANCE Laboratory-based RT-PCR, the current gold standard for COVID-19 testing, can require a turnaround time of 24 to 48 h from sample collection to result. The delayed time to result limits the effectiveness of centralized RT-PCR testing to reduce transmission and stem potential outbreaks. To address this, we conducted a thorough evaluation of the INDICAID COVID-19 rapid antigen test, a 20-minute rapid antigen test, in both symptomatic and asymptomatic populations. The INDICAID rapid test demonstrated high sensitivity and specificity with RT-PCR as the comparator method. A dual-track testing algorithm was also evaluated utilizing the INDICAID rapid test to screen for preliminary positive patients, whose samples were then prioritized for RT-PCR testing. The dual-track method demonstrated significant improvements in expediting the reporting of positive RT-PCR test results compared to standard RT-PCR testing without prioritization, offering an improved strategy for community testing and controlling SARS-CoV-2 outbreaks.


Subject(s)
Antigens, Viral/analysis , Asymptomatic Diseases , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/isolation & purification , Adult , Clinical Laboratory Techniques/methods , False Negative Reactions , False Positive Reactions , Female , Hong Kong , Humans , Male , Mass Screening/methods , Middle Aged , Pandemics , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling , Time Factors , Young Adult
5.
Virol J ; 17(1): 183, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940023

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has been a catastrophic burden to global healthcare systems. The fast spread of the etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the need to identify unknown coronaviruses rapidly for prompt clinical and public health decision making. Moreover, owing to the high mutation rate of RNA viruses, periodic surveillance on emerging variants of key virus components is essential for evaluating the efficacy of antiviral drugs, diagnostic assays and vaccines. These 2 knowledge gaps formed the basis of this study. In the first place, we evaluated the feasibility of characterizing coronaviruses directly from respiratory specimens. We amplified partial RdRP gene, a stable genetic marker of coronaviruses, from a collection of 57 clinical specimens positive for SARS-CoV-2 or other human coronaviruses, and sequenced the amplicons with Nanopore Flongle and MinION, the fastest and the most scalable massively-parallel sequencing platforms to-date. Partial RdRP sequences were successfully amplified and sequenced from 82.46% (47/57) of specimens, ranging from 75 to 100% by virus type, with consensus accuracy of 100% compared with Sanger sequences available (n = 40). In the second part, we further compared 19 SARS-CoV-2 RdRP sequences collected from the first to third waves of COVID-19 outbreak in Hong Kong with 22,173 genomes from GISAID EpiCoV™ database. No single nucleotide variants (SNVs) were found in our sequences, and 125 SNVs were observed from global data, with 56.8% being low-frequency (n = 1-47) missense mutations affecting the rear part of RNA polymerase. Among the 9 SNVs found on 4 conserved domains, the frequency of 15438G > T was highest (n = 34) and was predominantly found in Europe. Our data provided a glimpse into the sequence diversity of a primary antiviral drug and diagnostic target. Further studies are warranted to investigate the significance of these mutations.


Subject(s)
COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Coronavirus/genetics , Epidemiological Monitoring , Feasibility Studies , Genome, Viral/genetics , Hong Kong/epidemiology , Humans , Mutation, Missense , Nanopore Sequencing , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL